A Note on the Jacobian Conjecture

نویسنده

  • CHRISTOPHER I. BYRNES
چکیده

In this paper we consider the Jacobian conjecture for a map f of complex affine spaces of dimension n. It is well-known that if f is proper then the conjecture will hold. Using topological arguments, specifically Smith theory, we show that the conjecture holds if and only if f is proper onto its image.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

M ar 2 00 9 A note on the divergence - free Jacobian Conjecture in IR 2 ∗ M . Sabatini

We give a shorter proof to a recent result by Neuberger [11], in the real case. Our result is essentially an application of the global asymptotic stability Jacobian Conjecture. We also extend some of the results presented in [11].

متن کامل

A note on Fouquet-Vanherpe’s question and Fulkerson conjecture

‎The excessive index of a bridgeless cubic graph $G$ is the least integer $k$‎, ‎such that $G$ can be covered by $k$ perfect matchings‎. ‎An equivalent form of Fulkerson conjecture (due to Berge) is that every bridgeless‎ ‎cubic graph has excessive index at most five‎. ‎Clearly‎, ‎Petersen graph is a cyclically 4-edge-connected snark with excessive index at least 5‎, ‎so Fouquet and Vanherpe as...

متن کامل

The Divergence-free Jacobian Conjecture in Dimension Two

A special case, called the divergence-free case, of the Jacobian Conjecture in dimension two is proved. This note outlines an argument for a special case of the Jacobian conjecture in dimension two: Suppose F : C → C is a polynomial so that F (0) = 0, F ′(0) = I, det(F ′(z)) = 1, z ∈ C. (1) where I is the identity transformation on C. Write F (x, y) = ( r(x, y) + x s(x, y) + y ) , (x, y) ∈ C wh...

متن کامل

A Geometric Approach to the Two-dimensional Jacobian Conjecture

Suppose f(x, y), g(x, y) are two polynomials with complex coefficients. The classical Jacobian Conjecture (due to Keller) asserts the following. Conjecture. (Jacobian Conjecture in dimension two) If the Jacobian of the pair (f, g) is a non-zero constant, then the map (x, y) 7→ (f(x, y), g(x, y)) is invertible. Note that the opposite is clearly true, because the Jacobian of any polynomial map is...

متن کامل

Proof of Two Dimensional Jacobian Conjecture

is a nonzero constant, where A = ( ∂ fi ∂ xj )i,j=1 is the n × n Jacobian matrix of f1, ..., fn. One of the major unsolved problems of mathematics [S] (see also [B, CM, V2]), viz. the Jacobian conjecture, states that the reverse of the above statement also holds, namely, if the Jacobian determinant J(f1, ..., fn) ∈ F , then f1(x1, ..., xn), ..., fn(x1, ..., xn) ∈ F[x1, ..., xn] are generators o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008